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ILLUSTRATIVE EXAMPLES OF PRINCIPAL COMPONENT ANALYSIS

USING BMDP/4M

W. T. Federer, C. E. McCulloch and N. J. Miles-McDermott

BU-929-M February 1987

ABSTRACT

In order to provide a deeper understanding of the

workings of principal components, four data sets were

constructed by taking linear combinations of values of

two uncorrelated variables to forn the X-variates for

the principal component analysis. The examples

highlight some of the properties and limitations of

principal component analysis.

This is part of a continuing project that produces

annotated computer output for principal component

analysis. The complete project will involve processing

four examples on SAS/PRINCOMP, BMDP/4M, SPSS-X/FACTOR,

GENSTAT / PCP, and SYSTAT / FACTOR. We show here the

results from BMDP/4M, Version B5.

* Supported by the U.S. Army Research Office through the Mathematical

Sciences Institute of Cornell University.



1. INTRODUCTION

Principal components is a form of multivariate statistical

analysis and is one method of studying the correlation or

covariance structure in a set of measurements on m variables for

n observations. For example, a data set may consist of n = 260

samples and m = 15 different fatty acid variables. It may be

advantageous to study the structure of the 15 fatty acid

variables since some or all of the variables may be measuring the

same response. One simple method of studying the correlation

structure is to compute the m(m-l)/2 pairwise correlations and

note which correlations are close to unity. When a group of

variables are all highly inter-correlated, one may be selected

for use and the others discarded or the sum of all the variables

may be used. When the structure is more complex, the method of

principal component analysis (PCA) becomes useful.

In order to use and interpret a principal component analysis,

there needs to be some practical meaning associated with the

various principal components. In Section 2 we describe the basic

features of principal components and in Section 3 we examine some

constructed examples using BMDP/4M to illustrate the

interpretations that are possible. In Section 4 we summarize ourresults.

2. BASIC FEATURES OF PRINCIPAL COMPONENT ANALYSIS

PCA can be performed on either the variances and covariances

among the m variables or their correlations. One should always

2



check which is being used in a particular computer package

program. BMDP/4M, Version 85, can use either the variances and

covariances or the correlations but uses the correlations by

default. First we will consider analyses using the matrix of

variances and covariances. A PCA generates m new variables, the

principal components (PCs), by forming linear combinations of the

original variables, X = (X1 , X2 1,..., X m), as follows:

PC1 = b11X1 + b12X2 b 1mbXm = Xb1

PC2 =b X + b X + b X = Xb
2  21X1 22X2 2m m 2

PCm = bmlX 1 + bm2 X2 + b+ bmmXm = Xbm

In matrix notation,

P = (PCIPC2 ... ,PCm) = X (bl,b2 ,...,bm) = XB,

and conversely X = P B- I  .

The rationale in the selection of the coefficients, bij, that

define the linear combinations that are the PC i is to try to

capture as much of the variation in the original variables with

as few PCs as possible. Since the variance of a linear

combination of the Xs can be made arbitrarily large by selecting

very large coefficients, the b.. are constrained by convention so

that the sum of squares of the coefficients for any PC is unity:

J=m b? 1

Under this constraint, the blj in PC1 are chosen so that PC has

maximal variance.

3
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If we denote the variance of Xi by s2 and if we define the

1 SI

total variance as T = sm 2 then the proportion of the

variance in the original variables that is captured in PC1 can be

quantified as var(PC1 )/T. In selecting the coefficients for PC2,

they are further constrained by the requirement that PC2 be

uncorrelated with PC 1  . Subject to this constraint and the

constraint that the squared coefficients sum to one, the

coefficients b2j are selected so as to maximize var(PC2 ).

Further coefficients and PCs are selected in a similar manner, by

requiring that a PC be uncorrelated with all PCs previously

selected and then selecting the coefficients to maximize

variance. In this manner, all the PCs are constructed so that

they are uncorrelated and so that the first few PCs capture as

much variance as possible. The coefficients also have the

following interpretation which helps to relate the PCs back to

the original variables. The correlation between the it h PC and

the jth variable is

b. jvvar(PC.)/s j

After all m PCs have been constructed, the following identity

holds:

var(PCl) + var(PC2 ) +...+ var(PC ) = T si
2m i=1 1i

This equation has the interpretation that the PCs divide up the

total variance of the Xs completely. It may happen that one or

more of the last few PCs have variance zero. In such a case, all

the variation in the data can be captured by fewer than m
4



variables. Actually, a much stronger result is also true; the

PCs can also be used to reproduce the actual values of the Xs,

not just their variance. We will demonstrate this more

explicitly later.

The above properties of PCA are related to a matrix analysis

of the variance-covariance matrix of the Xs, Sx. Let D be a
.4 X

diagonal matrix with entries being the eigenvalues, Ni , of Sx

arranged in order from largest to smallest. Then the following

properties hold:

(i) Xi = var(PCi)

(ii) trace(Sx) = m s2 = T = Xm = 2m var(PCi)
ij -V ii i ilvrPi

(iii) corr(PCi,Xj) - 1

(iv) SX = B'DB

The statements made above are for the case when the analysis

is performed on the variance-covariance matrix of the Xs. The

correlation matrix could also be used, which is equivalent to

performing a PCA on the variance-covariance matrix of the

standardized variables,

Xi - Xi
y. ==1

S.
1

PCA using the correlation martrix is different in these respects:

(i) The total "variance" is m, the number of variables.

(It is not truly variance anymore.)

(ii) The correlation between PCi and Xj is given by

5
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b ij/var(PCi = b ij.V i = A. Thus PC i is most highly

correlated with the X. having the largest coefficient in

PCi in absolute value.

The experimenter must choose whether to use standardized (PCA on

a correlation matrix) or unstandardized coefficients (PCA on a

variance-covariance matrix). The latter is used when the

variables are measured on a comparable basis. This usually means

that the variables must be in the same units and have roughly

comparable variances. If the variables are measured in different

units, then the analysis will usually be performed on the

standardized scale, otherwise the analysis may only reflect the

different scales of measurement. For example, if a number of fat-

ty acid analyses are made, but the variances, s?, and means, Xi

are obtained on different bases and by different methods, then

standardized variables could be used (PCA on the correlation

matrix). To illustrate some of the above ideas, a number of

examples have been constructed and these are described in Section

3. In each case, two variables, Z1 and Z2 , which are

uncorrelated, are used to construct Xi. Thus, all the variance

can be captured with two variables and hence only two of the PCs

will have nonzero variances. In matrix analysis terms, only two

eigenvalues will be nonzero. An important thing to note is that

in general, PCA will not recover the original variables Z and

Z2. Both standardized and nonstandardized computations will be

made.

6



3. EXAMPLES

Throughout the examples we will use the variables Z1 and Z2

(with n = 11) from which we will construct XlIX 2 ,...,Xm . We will

perform PCA on the Xs. Thus, in our constructed examples, there

will only really be two underlying variables.

Values of Z1 and Z2

Z -5 -4 -3 -2 -1 0 1 2 3 4 51

Z2  15 6 -1 -6 -9 -10 -9 -6 -1 6 15

Notice that Z1 exhibits a linear trend through the 11 samples and

Z2 exhibits a quadratic trend. They are also chosen to have mean

zero and be uncorrelated. Z1 and Z2 have the following variance-

covariance matrix (a variance-covariance matrix has the variance

for the it h variable in the it h row and ith column and the

covariance between the it h variable and the jth variable in the i
t h

row and jth column).

Variance-covariance matrix of Z1 and Z2

[1 85.8]

Thus the variance of Z1 is 11 and the covariance between Z1 and Z2

is zero. Also the total variance is 11 + 85.8 = 96.8. Printed

parts of computer output that is repetitive have been omitted in

examples 2,3, and 4.

7



Example 1: In this first example we analyze Z1 and Z2 as if they

were the data. Thus X1 = Z1 and X2 = Z2 and m = 2. If PCA is

performed on the variance-covariance matrix, then the BMDP

output is as follows (BMDP control language for this example

and all subsequent examples is in the appendix and the boldface

print was typed on computer output to explain the calculation

performed):
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We can interpret the results as follows:

1) The first principal component is

PC, = 0-X1 + 1-X 2 = X2

2) PC 2 = 1.X1 + 0-X2 = X1

3) Var(PCl) = eigenvalue = 85.8 = Var(X 2 )

4) Var(PC2 ) = eigenvalue = 11.0 = Var(X1 )

The PCs may be the same as the Xs whenever the Xs are

uncorrelated. Since X2 has the larger variance, it becomes the

first principal component.

If PCA is performed on the correlation matrix, we get slightly

different results.

Correlation Matrix of Z1 and Z2

01 2
t: 2}

A correlation matrix always has unities along its diagonal and

the correlation between the ith variable and the j th variable in

the ith row and .th column. PCA in BMDP would yield the

following output:
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FACTOR SCORE COVARIANCE (COMPUTED FROM FACTOR SCORES)

FACTOR FACTOR
1 2

FACTOR 1 1.000

The principal components are again the Xs (standardized Zs)

themselves, but the eigenvalues (var(PCs)) are unity since the

variables have been standardized first.

Example 2: Let X= ZI, X2 =2Z 1 and X3 = Z 2 If the analysis is

performed on the variance-covariance matrix using BMDP the

results are:
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There are several items to note in these analyses:

i) There are only two nonzero eigenvalues since given X1 and X3 ,

X2 is computed from X1.

ii) X3 is its own principal component since it is uncorrelated with

all the other variables.

iii) The sum of the eigenvalues is the sum of the variances, i.e.,

11 + 44 + 85.8 = 140.8
and

1+1+1=3.

iv) For the variance-covariance analysis, the ratio of the

coefficients of X and X2 in PC2 is the same as the ratio of

.22
the variables themselves (since X 2 = 2X 1 ).

v) Since there are only two nonzero eigenvalues, only two of

the PCs have nonzero variances (are nonconstant).

vi) The coefficients help to relate the variables and the PCs. In

the variance-covariance analysis,

(coefficient of X in PC2 ) var(PC2 ) A 12C o r r P C 2 ,X = 1 ) 2 2_ _

var(X I) vvar(X)

21 2
sI

.447214V-5

3.16625
= 1

In the correlation analysis,

Corr(PC1 ,X1  = V = A1 1 = Component loading for PCl, I

= .707107'2

=1
29



Thus, in both these cases, the variable is perfectly

correlated with the PC.

vii) The Xs can be reconstructed exactly from the PCs with

nonzero eigenvalues. For example, in the variance-

covariance analysis, X3 is clearly given by PC 1  X1 and

X2 can be recovered via the formulas

X1 = PC 2/V5

= 2"PC2 /V

As a numerical example,

-5 = -11.180/V;

Example 3: For Example 3 we use X1 = Zl, X2  2(Z+5), X3 = 3(Z 1

+5) and X= Z2 . Thus X1 , X2 and X are all created from Z

The analyses for the variance-covariance matrix (unstandardized

analysis) and correlation matrix (standardized analysis) are

given below.
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For the variance-covariance analysis, the coefficients in PC are

in the same ratio as their relationship to Z . In the
correlation analysis Xl, X2 and X3 have equal coefficients. In

both analyses, as expected, the total variance is equal to the

sum of the variances for the PCs. In both cases two PCs, PC 3 and

PC4, have zero variance and are identically zero.

Example 4. In this example we take more complicated combinations

of Z and Z2.

X =Z

X2 = 2Z 1

X3 = 3Z 1

X4 = Z1 /2 + Z2

X = Z1 /4 + Z2

x6 Z1/8 + Z 2

X =Z7 2

Note that Xl, X2 and X3  are colinear (they all have correlation

unity) and X4 , X5 , X6  and X have steadily decreasing

correlations with XI.

The PCAs for the variance-covariance and correlation matrices are

given below.
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We note several things:

i) In both analyses there are only two eigenvalues that are nonzero

indicating that only two variables are needed. This is not

readily apparent from the correlation or variance-covariance

matrix.

ii) In PC 1, PC2 and PC 3 where the standardizrd X1 , X2 and X3 are

the same, they have the same coefficients.

iii) Neither PCA recovers Z and Z The PCAs with nonzero variances

have elements of both Z1 and Z2 in them, i.e., neither PC1 or

PC 2 is perfectly correlated with one of the Zs.

4. SUMMARY

PCA provides a method of extracting structure from the

variance-covariance or correlation matrix. If a multivariate

data set is actually constructed in a linear fashion from fewer

variables, then PCA will discover that structure. PCA constructs

linear combinations of the original data, X, with maximal

variance:
P = XB

This relationship can be inverted to recover the Xs from the PCs

(actually only those PCs with nonzero eigenvalues are needed -

see example 2). Though PCA will often help discover structure in

a data set, it does have limitations. It will not necessarily

recover the exact underlying variables, even if they were

uncorrelated (Example 4). Also, by its construction, PCA is

limited to searching for linear structures in the Xs.
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APPENDIX

Control Language

Control Language is typed in upper case and comments are in lower case.
Refer to BMDP , Version 1985 for program documentation.

Example 1: PCA on Covariance Matrix
/PROBLEM TITLE IS 'EXAMPLE I:PCA ON X1 AND X2'.
/INPUT VARIABLES ARE 2.

FORMAT IS FREE.
/VARIABLE NAMES ARE X1,X2. Input variables
/ROTATE METHOD=NONE. Instructs BMDP not to rotate factors
/FACTOR FORM=COVA. Specifies PCA on covariance matrix

CONSTANT=O. Instructs BMDP to restrict factors to those
whose eiqenvalues are > 0

/PRINT COVARIANCE. Instructs BMDP to print the covariance
NO CORRELATION. J matrix and input data
NO SHADE.
CASE=11.

/END
-5 15
-4 6
-3 -1
-2 -6
-1 -9
0 -10
1 -9
2 -6
3 -1
4 6
5 15

Example 1: PCA on correlation matrix
/PROBLEM TITLE IS 'EXAMPLE 1:PCA ON Xl AND X2'.
/INPUT VARIABLES ARE 2.

FORMAT IS FREE.
/VARIABLE NAMES ARE Xl,X2.
/ROTATE METHOD=NONE.
/FACTOR FORM=CORR. Specifies PCA on correlation matrix

CONSTANT0.
/PRINT CASE=11. 1 Instructs BMDP to print the covariance

NO SHADE.J matrix and raw data
/END

49

i - -~~~~~~~~.. ... . ...- . -
. .. -.... ...... ........ .. ... ... -......-............- *. •. .- - • , . .

V.~ * . . -.



-5 15
-4 6
-3 -1
-2 -6
-1 -9
0 -10
1 -9
2 -6
3 -1
4 6
5 15

Example 2: PCA on covariance matrix
/PROBLEM TITLE IS 'EXAMPLE 2:PCA ON X1, X2, AND X3'.
/INPUT VARIABLES ARE 2.

FORMAT IS FREE.
/VARIABLE NAMES ARE X1,X3,X2.

ADD=1.
/TRANSFORM X2=2*X1. Computes X2 from X1
/ROTATE METHOD=NONE.
/FACTOR FORM=COVA.

CONSTANT=O.
/PRINT CASE=11.

NO SHADE.
COVARIANCE.
NO CORRELATION.

/END
-5 15
-4 6
-3 -1
-2 -6
-1 -9
0 -I0
1 -9
2 -6
3 -1
4 6
5 15

Example 2: PCA on correlation matrix
/PROBLEM TITLE IS 'EXAMPLE 2:PCA ON Xl, X2, AND X3'.
/INPUT VARIABLES ARE 2.

FORMAT IS FREE.
/VARIABLE NAMES ARE Xl,X3,X2.

ADD=l.
/TRANSFORM X2=2*Xl.
/ROTATE METHOD=NONE.
/FACTOR FORM=CORR.

CONSTANT=0.
/PRINT CASE=II.

NO SHADE.
/END
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Example 3: PCA on covariance matrix
/PROBLEM TITLE IS 'EXAMPLE 3:PCA ON X1, X2, X3, AND X41.
/INPUT VARIABLES ARE 2.

FORMAT IS FREE.
/VARIABLE NAMES ARE X1,X4,X2,X3.

ADD=2.
/TRANSFORM X2=2*(X1+5).

X3=3* (Xl+5).
/ROTATE METHOD=NONE.
/FACTOR FORM=COVA.

CONSTANT=-l.
/PRINT COVARIANCE.

NO CORRELATION.
NO SHADE.
CASE=11.

/END
* -5 15

-4 6
-3 -1
-2 -6
-1 -9
0 -10
1 -9
2 -6
3 -1
4 6
5 15

Example 3: PCA on correlation matrix
/PROBLEM TITLE IS 'EXAMPLE 3:PCA ON Xl, X2, X3, AND X4'.
/INPUT VARIABLES ARE 2.

FORMAT IS FREE.
/VARIABLE NAMES ARE Xl,X4,X2,X3.

ADD=2.
/TRANSFORM X2=2*(X1+5).

X3=3* (Xl+5) .
/ROTATE METHOD=NONE.
/FACTOR FORM=CORR.

CONSTANT=-l.
/PRINT CASE=11.

NO SHADE.
/END
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Example 4: PCA on covariance matrix
/PROBLEM TITLE IS 'EXAMPLE 4:PCA ON X1, X2, X3, X4, X5, X6, AND X7'.
/INPUT VARIABLES ARE 2.

FORMAT IS FREE.
/VARIABLE NAMES ARE X1,X7,X2,X3,X4,X5,X6.

ADD=5.
/TRANSFORM X2=2*X1.

X3=3*X1.
X4= (Xl/2) +X7.
X5=(Xl/4)+X7.
X6=(Xl/8) +X7.

/ROTATE METHOD=NONE.
/FACTOR FORM=COVA.

CONSTANT=O.
/PRINT COVARIANCE.

NO CORRELATION.
NO SHADE.
CASE=11.

/END
-5 15

5 15

Example 4: PCA on correlation matrix
/PROBLEM TITLE IS 'EXAMPLE 4:PCA ON Xl, X2, X3, X4, X5, X6, AND X7'.
/INPUT VARIABLES ARE 2.

FORMAT IS FREE.
/VARIABLE NAMES ARE X1,X7,X2,X3,X4,X5,X6.

ADD=5.
/TRANSFORM X2=2*Xl.

X3=3*Xl.
X4=(Xl/2)+X7.
X5=(Xl/4)+X7.
X6= (XI/8) +X7.

/ROTATE METHOD=NONE.
/FACTOR FORM=CORR.

CONSTANT=O.
/PRINT CASE=l1.

NO SHADE.
/END

-5 15

5 15
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